Synthesis of the First Ruthenium(III) High Spin Complex: Novel {RuNO} 5 d Electron and {RuNO} 7 d Electron Complexes

Krishna K. Pandey,^{*} Sita R. Ahuja, Narendra S. Poonia, and Sudhakar Bharti Department of Chemistry, University of Indore, Khandwa Road, Indore-452 001, India

Nitrosyl chloride reacts with hydrated ruthenium trichloride in the presence of triphenylphosphine (Ru : PPh₃ = 1 : 8) to give the pink Ru^{III} high spin complex NH₄[Ru(NO)Cl₅], NH₄Cl, and the green {RuNO} 7 d electron complex [Ru(NO)Cl₂(PPh₃)]₂ which reacts with PPh₃ to give the yellow {RuNO} 7 d electron complex Ru(NO)Cl₂(PPh₃)₂.

All the complexes of ruthenium(III) so far reported are low spin, six co-ordinate. No nitrosyl or nitro complexes of Ru^{III} are known, and only two {RuNO} 7 d electron complexes [Ru(NO)Cl(bipy)₂]I and [Ru(NO)(MeCN)(bipy)₂]PF₆ (bipy = 2,2'-bipyridyl) have been isolated as solids.^{1,2} We now report (i), an Ru^{III} high spin complex NH₄[Ru(NO)Cl₅] having an {RuNO} 5 d electron moiety, (ii), formation of NH₄Cl from NOCl, and (iii), neutral {RuNO} 7 d electron complexes [Ru(NO)Cl₂(PPh₃)]₂ and Ru(NO)Cl₂(PPh₃)₂.

Treatment of NOCl with $RuCl_3 H_2O$ in the presence of PPh₃ (Ru: PPh₃ = 1:8) in EtOH-CH₂Cl₂ affords NH₄-[Ru(NO)Cl₅] (1), [Ru(NO)Cl₂(PPh₃)]₂ (2), and NH₄Cl. De-

creasing the amount of PPh₃ results in the formation of Ru(NO)Cl₃(PPh₃)₂. The complex (2), on refluxing with PPh₃ in CH₂Cl₂, gives Ru(NO)Cl₂(PPh₃)₂ (3).

The complex (1) is pink, air stable, and forms a 1:1 electrolyte in water.[†] The i.r. spectrum exhibits v_{N0} 1900, v_{Ru-Cl} 330 and 285 cm⁻¹, and bands due to NH⁺₄. The magnetic moment ($\mu = 5.86 \ \mu_B$), which does not vary with changing temperatures, corresponds to five unpaired electrons suggesting a high spin d⁵ ($t_{2g}^3 e_g^2$) configuration for the Ru^{III} ion. The e.s.r. spectrum of (1) is typical of a d⁵ spin-free system having six lines [g_{av} 2.003, A_{1s0} (¹⁰¹Ru) 46 G]. In the electronic spectrum [λ_{max} (ϵ), 520 (6.5), 390 (10), 360 (23), 265 (1436), and 212 nm (4244)] the intensity of the lowest energy bands is more than that expected for spin forbidden transitions. This is due to the fact that the lowest energy bands correspond to d \rightarrow d transitions with the occupied metal orbital having some Cl character.³

Complex (2), the other product from the reaction, gives green crystals which are air stable and does not form an electrolyte in nitrobenzene.[†] The molecular weight, obtained by field desorption mass spectrometry is 927. The i.r. spectrum shows v_{N0} 1878, $v_{Ru Cl}$ 342 and 240 cm⁻¹ and the magnetic moment for (2) ($\mu = 1.56 \mu_B$) is lower than the spin-only value. The complex (2) was shown to be paramagnetic by e.s.r. spectroscopy (g_{av} 2.13, g_z 2.028, $g_x = g_y$ 2.18). For an {MNO} 7 d electron system the additional electron could be in either the ($d_{z2} - \sigma_{N0}$) or the ($\pi^*_{x:y} - d_{xz}d_{yz}$) orbital which would result in a ²A₁ or ²E state, respectively.⁴ For the

† Satisfactory analytical data were obtained for all new compounds.

$$NH_{4}[Ru(NO)Cl_{5}] \qquad [Ru(NO)Cl_{2}(PPh_{3})]_{2}$$
(1)
(2)

Ru(NO)Cl₂(PPh₃)₂

(3)

linear ${}^{2}A_{1}$ ground state the possible structure of complex (2) would be square pyramidal with a chloro-bridge.

The complex Ru(NO)Cl₂(PPh₃)₂ (3) is a yellow crystalline solid and a non-electrolyte: v_{N0} 1868 and v_{Ru} (1) 340 cm⁻¹, $\mu = 1.6 \mu_B$.† The e.s.r. spectrum is very broad with g_{av} 2.12, and g_z 2.00 is obtained by resolution of the broad spectrum. This indicates a ground state of ²A₁ with the structure of the complex (3) being square pyramidal. Diamagnetic complexes of a similar type, *i.e.* Ru(NO)I₂L₂ [L₂ = (pyridine)₂, bipy, and tertiary phosphine], have been reported earlier.⁵

We thank the C.S.I.R. for a fellowship (to S.R.A.) and the U.G.C. for financial support for this work.

Received, 30th June 1982; Com. 760

References

- 1 R. W. Callahan, G. M. Brown, and T. J. Mayer, J. Am. Chem. Soc., 1975, 97, 894.
- R. W. Callahan and T. J. Mayer, *Inorg. Chem.*, 1977, 16, 574.
 A. B. Nikolskii, A. M. Popov, and I. V. Vasilevskii, *Sov. J. Coord. Chem. (Engl. Transl.)*, 1976, 2, 508.
- 4 J. H. Enemark and R. D. Feltham, *Coord. Chem. Rev.*, 1974, 13, 339; T. W. Hawkins and M. B. Hall, *Inorg. Chem.*, 1980, 19, 1735.
- 5 R. J. Irving and P. G. Laye, J. Chem. Soc. A, 1966, 161.